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Super Yang-Mills theory (SYM)

Supersymmetric Yang-Mills theory:

L = Tr

[
−1

4
FµνF

µν +
i

2
ψ̄ /Dψ−mg

2
ψ̄ψ

]

gauge sector of supersymmetric extensions of the standard
model

ψ Majorana fermion in the adjoint representation

confinement: bound states at low energies

symmetries: specific form of low energy effective actions
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Symmetries

SUSY (mg = 0)

supersymmetry predicts paring of bosonic and fermionic states

no spontaneous breaking / anomaly of SUSY expected

UR(1) symmetry: ψ → e−iθγ5ψ

UR(1) anomaly: θ = kπ
Nc

, UR(1)→ Z2Nc

UR(1) spontaneous breaking: Z2Nc

〈ψ̄ψ〉6=0→ Z2

4/27



SYM Lattice SYM Eigenvalues WD Results Conclusions

Quantized continuum SYM

value of 〈ψ̄ψ〉 is known

exact beta function is known

Low energy effective actions:

susy multiplets (degenerate masses)

1. multiplet1:
mesons : a− f0: ψ̄ψ and a− η′: ψ̄γ5ψ
fermionic gluino-glue (σµνFµνψ)

2. multiplet2:
glueballs: 0++ and 0−+

fermionic gluino-glue

1
[Veneziano, Yankielowicz, Phys.Lett.B113 (1982)]

2
[Farrar, Gabadadze, Schwetz, Phys.Rev. D58 (1998)]
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Supersymmetric Yang-Mills theory on the lattice
Lattice action:

SL = β
∑
P

(
1− 1

Nc
<UP

)
+

1

2

∑
xy

ψ̄x (Dw (mg ))xy ψy

“brute force” discretization: Wilson fermions

Dw = 1− κ
4∑

µ=1

[
(1− γµ)α,βT̂µ + (1 + γµ)α,βT̂

†
µ

]
T̂µψ(x) = Vµψ(x + µ̂); κ =

1

2(mg + 4)

links in adjoint representation: (Vµ)ab = 2Tr[U†µT aUµT
b]

gauge group SU(2)
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Symmetries of lattice SYM

supersymmetry always broken in local lattice theory1

Wilson mass spoils mass degeneracy

chiral symmmetry (UR(1)) broken by the Wilson-Dirac
operator

no controlled breaking (Ginsparg-Wilson relation)

⇒ need fine tuning!

1
[GB, JHEP 1001:024 (2010)], [Kato, Sakamoto & So, JHEP 0805:057 (2008)]
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Ward identities on the lattice

Ward identities of supersymmetry and chiral symmetry:

〈∇µJµS (x)O(y)〉 = mg 〈DS(x)O(y)〉+ 〈XS(x)O(y)〉
〈∇µJµA(x)O(y)〉 = mg 〈DA(x)O(y)〉+ 〈XA(x)O(y)〉+ ∝ 〈F F̃ O〉

classical (tree level): XS(x) = O(a), XA(x) = O(a)

renormalization, operator mixing1,2:

〈∇µZAJ
µ
A(x)O〉 = (mg − m̄g )〈DA(x)O〉+ ∝ 〈F F̃ O〉+ O(a)

〈∇µ(ZSJ
µ
S (x) + Z̃S J̃S

µ
(x))O〉 = (mg − m̄g )〈DS(x)O〉+ O(a)

⇒ tuning of mg : chiral limit = SUSY limit +O(a)

1
[Bochicchio et al., Nucl.Phys.B262 (1985)]

2
[Veneziano, Curci, Nucl.Phys.B292 (1987)]
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Supersymmetric chiral limit

practical problems:

noisy signal of supersymmetric Ward identies

chiral Ward identities contain anomaly

〈ψ̄(x)γ5ψ(x) ψ̄(y)γ5ψ(y)〉 = 〈
x y

− 2 x y〉

define connected part as adjoint pion (a− π)

disconnected part contains anomaly (OZI approximation)

chiral limit: ma−π vanishes

⇒ possible definition of gluino mass: ∝ (ma−π)2

At the end the consistency with the SUSY Ward identities is
checked!
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Simulations of SYM

simulating Majorana fermions:∫
Dψe−

1
2

∫
ψ̄Dψ = Pf(CD) = sign(Pf(CD))

√
detD

= sign(Pf(CD))

∫
Dφ̄Dφe−

∫
φ̄(D†D)−1/4φ

reweighting with Pfaffian (Pf) sign

PHMC algorithm: x−1/4 ≈ P(x)

improvement of the polynomial approximation: reweighting
with exact contribution of smallest eigenvalues
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The sign of the Pfaffian

γ5 D γ5 = D† ⇒ paring λ, λ∗

C DCT = DT ⇒ degenerate eigenvalues

|Pf(C D)| =
√
det(D) =

∏N/2
i=1 |λi |

|Pf(C (D−σ1l))| =
∏N/2

i=1 |λi − σ|

Pfaffian polynomial in σ ⇒ Pf(C D) =
∏N/2

i=1 λi

number of negative paired real eigenvalues of D even / odd
⇒ positive / negative Pfaffian

on small lattices: checked with exact Pfaffian

same problem (apart from degeneracy):
determinant sign in Nf = 1 QCD

11/27



SYM Lattice SYM Eigenvalues WD Results Conclusions

Obtaining the lowest real eigenvalues of Dw

Focus the Arnoldi algorithm on small stripe around real axis!
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Polynomial transformation of Dw

reflected spectrum: largest real eigenvalues should be
computed

Arnoldi algorithm calculates eigenvalues with real part above
certain value

computed region contains large number of unwanted
eigenvalues

Two effects of transformation Dw → P(Dw ):

1 focusing: better overlap of transformed wanted region with
region computed by Arnoldi

2 acceleration, if eigenvalues not computed by Arnoldi
compressed in a small region

eigenvalues of Dw obtained from eigenvectors of P(Dw )
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Simple transformation1 P(Dw) = (Dw +σ01l)n0

complex eigenvalues “rotated away” from real axis:
λi = ρie

iθ : θ → n0θ

computed regions in original spectrum:

saturation at higher orders, broad outer part of computed region
1

[H. Neff, Nucl. Phys. Proc. Suppl. 106 (2002)]
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The iterated transformation1

P(Dw ) = (. . . ((Dw +σ01l)n0 + σ11l)n1 . . .)
optimization at each step

computed regions in original spectrum:

narrow outer part of computed region!
1

[GB, Wuilloud, Comp. Phys. Comm. (2011)]
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Eigenvalues obtained from the iterated transformation

avoids large eigenvalue densities
increases efficiency
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Eigenvalues of Dw (323 × 64, κ = 0.1495, β = 1.75)

for the determination of spectrum:
low contribution with neg. Pfaffian (6 of 2000 configurations)

additional acceleration: even-odd preconditioning
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Masses and particles

considered operators:

0++:

reasonable signal only with variational smearing

fermionic gluino-glue

operator σµνTr[F̂µνψ]
APE smearing on gauge fields and Jacobi smearing on ψ

Meson operators a− f0, a− η′:
disconnected contribution dominant at small gluino masses:

〈
x y

〉 = 〈D−1(x , x) D−1(y , y)〉eff

technique: SET (dilution, truncated solver method)
exact contribution of lowest γ5 Dw eigenvalues
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Eigenvalues of even-odd preconditioned Hermitian
Wilson-Dirac operator

acceleration of Arnoldi algorithm: Chebyshev polynomial
⇒ improvement: polynomial approximation of update algorithm

(reweighting)
⇒ improvement: measurement of disconnected contributions and

condensate
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disconnected a− η′ on a 323 × 64 lattice:

reasonable improvement at small gluino masses

acceleration of SET inversions
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Details of the simulations

simulation algorithm: PHMC

tree level Symanzik improved gauge action

stout smearing

Sexton-Weingarten integrator

determinant breakup

previous simulations:

lattice sizes: 163x32, 243x48 (323x64)

r0 ≡ 0.5fm → a ≤ 0.088fm; L ≈ 1.5− 2.3fm

ma−π ≈ 440MeV
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Previous SUSY Yang-Mills results

No mass degeneracy in chiral limit!
Tuning with SUSY Ward identities compatible with tuning of
ma−π. [Demmouche et al., Eur.Phys.J.C69 (2010)]
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New simulations at smaller lattice spacing

Before speculating about new physics: Most likely explanation are
lattice artifacts!

new simulations:

volume fixed, smaller lattice spacing

⇒ increased β from 1.6 to 1.75

simulations on 323x64 lattice
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Confinement and physical scale of the new simulations

good agreement with V (r) = v0 + c/r + σr (confining)

⇒ a ≈ 0.057fm, L ≈ 1.8fm
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Comparison of the mass gap between a− η′ and gluino-glue

mass gap considerably reduced
gluino-glue has much lower mass
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Complete spectrum obtained with the new simulations

indicates mixing of a− f0 and 0++ glueball
in contrast to smaller lattice spacing: a− f0, glueball heavier
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Conclusions

In supersymmetric Yang-Mills theory the unavoidable breaking
of SUSY on the lattice can be controlled by a fine tuning of
the gluino mass (κ).

The sign Pfaffian can be determined from the real eigenvalues
of the non-Hermitian Wilson-Dirac operator.

Polynomial acceleration of Arnoldi algorithm leads to efficient
determination of lowest real eigenvalues. 1

The eigenvalues of the Hermitian even-odd preconditioned
matrix are used to improve the algorithm and the observables.

Possible further uses of the eigenvalue distributions ?

The mass gap between bosonic and fermionic states is
considerably reduced at a smaller lattice spacing.

Further improvements of the action are currently investigated.
1Same method has been applied for the determinant sign in Nf = 1 QCD.
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