

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Lattice QCD in the heavy and dense region

Jens Langelage

ETH Zürich

in collaboration with:

Mathias Neuman, Owe Philipsen (University of Frankfurt)

Jens Langelage ETH Zürich

Introduction

- Review strong coupling and hopping parameter expansions
- Derive analytical results for the heavy quark mass, small temperature and large chemical potential region of Lattice QCD
- Show how to include finite mass and gauge corrections
- New: $N_f = 2$ results and Isospin chemical potential

Lattice

- (3+1)d hypercubic lattice with lattice spacing a
- Temporal extent N_{τ}
- Spatial extent $N_s \rightarrow \infty$: thermodynamic limit
- Periodic boundary conditions in time direction for bosons
- Antiperiodic boundary conditions in time direction for fermions
- Temperature: $T = \frac{1}{aN_{\tau}}$

Definition of the effective action

Partition function with Wilson fermions after Grassmann integration

$$Z = \int [dU_{\mu}] \det[Q] \exp[S_g]$$

Quark hopping matrix

$$\begin{array}{lcl} Q_{\alpha\beta,xy}^{ab} & = & \delta^{ab}\delta_{\alpha\beta}\delta_{xy} - \kappa\sum_{\nu=0}^{3} \left[\mathrm{e}^{a\mu\delta_{\nu0}}(1+\gamma_{\nu})_{\alpha\beta}U_{\nu}^{ab}(x)\delta_{x,y-\hat{\nu}} \right. \\ \\ & + & \left. \mathrm{e}^{-a\mu\delta_{\nu0}}(1-\gamma_{\nu})_{\alpha\beta}U_{-\nu}^{ab}(x)\delta_{x,y+\hat{\nu}} \right] \,. \end{array}$$

Gauge action

$$S_g = \frac{\beta}{2N_c} \sum_{p} \left[\operatorname{tr} U_p + \operatorname{tr} U_p^{\dagger} \right] ,$$

Effective theory: Integrate out spatial link variables

$$e^{S_{ ext{eff}}} \equiv \int [dU_k] \det[Q] \exp[S_g]$$

Effective action depends only on Polyakov loops

$$W_i = \prod_{\tau=1}^{N_\tau} U_0(\vec{x}_i, \tau)$$

■ We can use reduced Haar measure

$$\int \left[\prod_{\tau,i} dU_0(\vec{x_i}, \tau) \right] \rightarrow \int \left[\prod_i dW_i \right] \rightarrow \int \left[\prod_i dL_i \right] e^{V(L,L^*)} ,$$

$$V(L,L^*) = \frac{1}{2} \ln \left(27 - 18|L|^2 + 8 \operatorname{Re} L^3 - |L|^4 \right) .$$

■ Dimensionally reduced theory formulated in complex numbers

= *) 4(*

Remarks

- Effective theory not known in full parameter space $(\beta, \kappa_f, N_\tau, \mu)$
- Need infinite tower of interaction terms
- So far we do not now the full dependence for even some of the effective couplings
- Approximate effective couplings in a strong coupling and hopping parameter expansion around $(\beta, \kappa) = (0, 0)$, where the quarks are infinitely heavy and the lattice is maximally coarse
- There is still a sign problem, albeit milder the heavier the quarks

Pure gauge theory

Expand Wilson action in characters

$$\exp\left[rac{eta}{6}\left({
m tr} U + {
m tr} U^\dagger
ight)
ight] = c_0(eta)\left[1 + \sum_{r
eq 0} d_r a_r(eta)\chi_r(U)
ight]$$

- **E**xpress results in fundamental expansion coefficient $u = a_f(\beta)$
- Leading order corresponds to a chain of N_{τ} plaquettes

$$e^{S_{ ext{eff}}^g} = u^{N_{ au}} \sum_{\langle ij \rangle} \operatorname{Tr} W_i \operatorname{Tr} W_j$$

Need group integral

$$\int dU U_{ij} U_{kl}^{\dagger} = \frac{1}{3} \delta_{il} \delta_{jk}$$

Relevance for small temperatures

Temperature on the lattice

$$T = \frac{1}{N_{\tau}a}$$

- Cold means large a (= small β) or large N_{τ}
- Continuum physics then needs large N_{τ} , where $u^{N_{\tau}}$ is exponentially small, since u < 1
- Corrections increase the effective coupling, but it remains vanishingly small
- Next-to-nearest neighbour interactions are even stronger suppressed
- For now, neglect gauge corrections = Strong coupling limit

Hopping parameter expansion

Static quark determinant

Write the hopping matrix as

$$Q = 1 - \sum_{\pm
u} \kappa_{
u} (1 + \gamma_{
u}) U_{
u}(x) = 1 - T - S$$

 Static limit: Neglect spatial quark hops. Determinant can be evaluated exactly

$$egin{aligned} \det \left[Q_{\mathrm{stat}}
ight] &\equiv \det \left[1 - T^+
ight] \left[1 - T^-
ight] \ &= \prod_{f,i} \det \left[1 + c_f W_i
ight]^2 \det \left[1 + ar{c}_f W_i^\dagger
ight]^2 \end{aligned}$$

Polyakov loops thus have a fugacity factor

$$c \equiv (2\kappa e^{a\mu})^{N_{\tau}} = (2\kappa)^{N_{\tau}} e^{\frac{\mu}{T}} = \exp\left[\frac{\mu - \frac{1}{3}m_B^{\mathrm{stat}}}{T}\right]$$

$N_f = 1, T = 0$

■ Partition function: Single site problem

$$Z = \left\{ \int dW \det \left[1 + cW_i
ight]^2 \det \left[1 + ar{c}W_i^\dagger
ight]^2
ight\}^{\mathcal{N}_s^3}$$

■ Pressure (omitting *c* contributions)

$$P = \frac{T}{V} \ln Z = \frac{1}{N_{\tau} a^4} \ln \left[1 + 4c^3 + c^6 \right]$$

Number density

$$a^3n_q = \frac{12c^3 + 6c^6}{1 + 4c^3 + c^6}$$

$N_f = 1$, T = 0

Number density

$$a^3 n_q = \frac{12c^3 + 6c^6}{1 + 4c^3 + c^6}$$

■ Limit $T \rightarrow 0$

$$\lim_{T \to 0} c = \lim_{T \to 0} \exp \left[\frac{\mu_q - \frac{1}{3} m_B^{\text{stat}}}{T} \right]$$

- lacksquare Onset at $\mu_q=rac{1}{3}\textit{m}_B^{\rm stat}$
- Number density at T=0

$$\lim_{T \to 0} a^3 n_q = \begin{cases} 0, & \mu_q < \frac{1}{3} m_B^{\text{stat}} \\ 2N_c, & \mu_q > \frac{1}{3} m_B^{\text{stat}} \end{cases}$$

Pauli principle

Consider leading c behavior

$$Z = \left\{ \int dW \exp\left[2cW_i\right] \right\}^{N_s^3}$$

- Group integral now harder, but has been solved
- Result: No saturation for this truncated version of the effective theory, violation of the Pauli principle
- \blacksquare Lesson: Need to each order in κ the complete dependence on chemical potential encoded in c

$$N_f = 2$$
, $T = 0$, $\mu_u = \mu_d$

■ Partition function: Omitting \bar{c} contributions

$$Z = \left\{ \int dW \prod_{f=1}^{2} \det \left[1 + c_{f} W_{i} \right]^{2} \det \left[1 + \bar{c}_{f} W_{i}^{\dagger} \right]^{2} \right\}^{N_{s}^{2}}$$
$$= 1 + 4c_{u}^{3} + 4c_{d}^{3} + 6c_{u}^{2} c_{d} + 6c_{u} c_{d}^{2} + \dots + c_{u}^{6} c_{d}^{6}$$

■ Onset at (assuming $m_u < m_d$)

$$\mu_q^c = \frac{1}{6} \left(m_{uuu}^{\text{stat}} + m_{ddd}^{\text{stat}} \right)$$

Number density at T=0

$$\lim_{T \to 0} a^3 n_q = \begin{cases} 0, & \mu_q < \frac{1}{6} \left(m_{uuu}^{\rm stat} + m_{ddd}^{\rm stat} \right) \\ 2N_c N_f, & \mu_q > \frac{1}{6} \left(m_{uuu}^{\rm stat} + m_{ddd}^{\rm stat} \right) \end{cases}$$

$N_f = 2$, T = 0, $\mu_u = -\mu_d$

■ Partition function: Omitting \bar{c}_u and c_d contributions

$$Z = \left\{ \int dW \prod_{f=1}^{2} \det \left[1 + c_f W_i \right]^2 \det \left[1 + \bar{c}_f W_i^{\dagger} \right]^2 \right\}^{N_s^2}$$
$$= 1 + 4c_u \bar{c}_d + \ldots + c_u^6 \bar{c}_d^6$$

• Onset at (assuming $m_u < m_d$)

$$\mu_q^c = \frac{1}{2} m_{u\bar{d}}^{\mathrm{stat}} = \frac{1}{2} m^{\mathrm{stat}} (\pi^+)$$

Number density

$$\lim_{T \to 0} a^3 n_q = \begin{cases} 0, & \mu_q < \frac{1}{2} m_{u\bar{d}}^{\text{stat}} \\ 2N_c N_f, & \mu_q > \frac{1}{2} m_{u\bar{d}}^{\text{stat}} \end{cases}$$

Corrections

Leading fermionic correction

Introduce some definitions and perform some algebra

$$\det[Q] = \det[1 - T - S] = \det[1 - T][1 - (1 - T)^{-1}S]
= \det[Q_{\text{stat}}][Q_{\text{kin}}]$$

Split S in positive and negative directions

$$det[Q_{kin}] = det[1 - (1 - T)^{-1}(S^{+} + S^{-})] = det[1 - P - M]$$

= exp [Tr ln (1 - P - M)]

- Trace in coordinate space (=closed loops), i.e. only terms with an equal number of *P* and *M* survive
- To $O(κ^2)$

$$\mathsf{det}[Q_{\mathrm{kin}}] = \mathsf{det}[1 - PM][1 + \mathcal{O}(\kappa^4)]$$

Higher corrections can be systematically included in this way

Static propagator

Essential ingredient for computing corrections:

$$D = (1 - T)^{-1} = (1 - T^{+})^{-1} + (1 - T^{-})^{-1} - 1$$

Only temporal hops are involved: closed form expression available (but it is a quite lengthy expression). Splitting it in spin space:

$$D_{t_1,t_2} = A_{t_1,t_2} + \gamma_0 B_{t_1,t_2}$$

■ For the leading correction we only need the part of B_{t_1,t_2} diagonal in time

$$B_{t_1,t_1} = -\frac{1}{2} \frac{cW}{1+cW} + \frac{1}{2} \frac{\bar{c}W^{\dagger}}{1+\bar{c}W^{\dagger}}$$

Static propagator: $z = (2\kappa e^{a\mu})$

$$A = \delta_{\tau_{1}\tau_{2}} \left(1 - \frac{1}{2} \frac{cW}{1 + cW} - \frac{1}{2} \frac{\bar{c}W^{\dagger}}{1 + \bar{c}W^{\dagger}} \right)$$

$$+ \Theta(\tau_{2} - \tau_{1}) \frac{1}{2} \left(\frac{z^{\tau_{2} - \tau_{1}} W(\tau_{1}, \tau_{2})}{1 + cW} - \frac{\bar{z}^{N_{\tau} + \tau_{1} - \tau_{2}} W^{\dagger}(\tau_{1}, \tau_{2})}{1 + \bar{c}W^{\dagger}} \right)$$

$$+ \Theta(\tau_{1} - \tau_{2}) \frac{1}{2} \left(-\frac{z^{N_{\tau} + \tau_{2} - \tau_{1}} W(\tau_{1}, \tau_{2})}{1 + cW} + \frac{\bar{z}^{\tau_{1} - \tau_{2}} W^{\dagger}(\tau_{1}, \tau_{2})}{1 + \bar{c}W^{\dagger}} \right)$$

$$B = \delta_{\tau_{1}\tau_{2}} \frac{1}{2} \left(-\frac{cW}{1 + cW} + \frac{\bar{c}W^{\dagger}}{1 + \bar{c}W^{\dagger}} \right)$$

$$+ \Theta(\tau_{2} - \tau_{1}) \frac{1}{2} \left(\frac{z^{\tau_{2} - \tau_{1}} W(\tau_{1}, \tau_{2})}{1 + cW} + \frac{\bar{z}^{N_{\tau} + \tau_{1} - \tau_{2}} W^{\dagger}(\tau_{1}, \tau_{2})}{1 + \bar{c}W^{\dagger}} \right)$$

$$+ \Theta(\tau_{1} - \tau_{2}) \frac{1}{2} \left(-\frac{z^{N_{\tau} + \tau_{2} - \tau_{1}} W(\tau_{1}, \tau_{2})}{1 + cW} - \frac{\bar{z}^{\tau_{1} - \tau_{2}} W^{\dagger}(\tau_{1}, \tau_{2})}{1 + \bar{c}W^{\dagger}} \right)$$

Static propagator

Essential ingredient for computing corrections:

$$D = (1 - T)^{-1} = (1 - T^{+})^{-1} + (1 - T^{-})^{-1} - 1$$

Only temporal hops are involved: closed form expression available (but it is a quite lengthy expression). Splitting it in spin space:

$$D_{t_1,t_2} = A_{t_1,t_2} + \gamma_0 B_{t_1,t_2}$$

■ For the leading correction we only need the part of B_{t_1,t_2} diagonal in time

$$B_{t_1,t_1} = -\frac{1}{2} \frac{cW}{1+cW} + \frac{1}{2} \frac{\bar{c}W^{\dagger}}{1+\bar{c}W^{\dagger}}$$

Result for leading correction

Now the spatial link integration is nontrivial

$$\int [dU_k] \det[1-PM] = \int [dU_k][1-\mathrm{Tr}PM+\mathcal{O}(\kappa^4)]$$

For every spatial link there are now exactly one U and one U^{\dagger} and with

$$\int dU \ U_{ij} U_{kl}^{\dagger} = \frac{1}{N_c} \delta_{il} \delta_{jk}$$

we have (omitting \bar{c} contributions)

$$\int [dU_k][1 - \text{Tr}PM] = \prod_{\langle ii \rangle} \left[1 - \frac{\kappa^2 N_\tau}{N_c} \text{Tr} \frac{cW_i}{1 + cW_i} \text{Tr} \frac{cW_j}{1 + cW_j} \right]$$

Number density?

■ Partition function for N_f flavors

$$Z = \int [dW] \prod_{f,i} \det[1 + c_f W_i]$$

$$\prod_{f,} \left[1 - \frac{\kappa^2 N_\tau}{N_c} \operatorname{Tr} \frac{c_f W_i}{1 + c_f W_i} \operatorname{Tr} \frac{c_f W_j}{1 + c_f W_j} \right]$$

- No analytic solution, simulation via Complex Langevin Dynamics
- Taylor expansion in $\frac{\kappa^2 N_\tau}{N_c}$ leads again to the same step function at T=0
- We can not see changes in onset due to interactions by inspecting a Taylor expansion to a finite order

Higher order corrections

Nearest-neighbour interaction also contains higher orders

$$\det[1 - PM] = \exp\left[-\operatorname{Tr}\sum_{n} \frac{1}{n} (PM)^{n}\right]$$

Full kinetic determinant contains couplings between all points

$$\det[Q_{kin}] = \det[1 - PM - P^2M^2 - \ldots]
= \det[1 - PM][1 - P^2M^2][1 + \mathcal{O}(\kappa^6)]$$

- Note that $P = \sum_{i=1}^{3} P_i$, i.e. P^2 mixes different directions
- Up to now: κ^4 contribution is finished, for certain situations (large N_{τ} behavior) even much higher orders are computable

Gauge corrections

Leaving the strong coupling limit we have to compute

$$\int [dU_k] \det[Q_{
m kin}] \prod_p \left[1 + \sum_{r
eq 0} d_r a_r(eta) \chi_r(U_p)
ight]$$

- Now: double series expansion in β and κ
- No conceptual difficulties, only a larger number of terms to be computed
- So far: results up to and including $\mathcal{O}(\kappa^n \beta^m)$ with n+m=4

Resummations

- Why resummations:
 - Include higher order graphs at minimal cost
 - Does not compromise correctness of originial series
 - But: At some point, imperative to include them
- Leading κ correction

$$\int [dU_k] \det[1 - PM] = \prod_{\langle ij \rangle} \left[1 - \frac{\kappa^2 N_\tau}{N_c} \operatorname{Tr} \frac{cW_i}{1 + cW_i} \operatorname{Tr} \frac{cW_j}{1 + cW_j} \right]$$

■ Small T region: coefficient diverges for fixed κ

Resummations

■ These terms exponentiate

After resumming these terms

$$\int [dU_k] \det[1 - PM] = \prod_{\langle ij \rangle} \exp\left[-\frac{\kappa^2 N_\tau}{N_c} \mathrm{Tr} \frac{cW_i}{1 + cW_i} \mathrm{Tr} \frac{cW_j}{1 + cW_j} \right]$$

 Similar results hold also for other terms, e.g. the single Polyakov line coupling receives renormalization

Conclusions

- Hopping expansion straightforward, but correct physics requires some attention (Pauli principle)
- Resummations necessary to improve convergence (or even to get meaningful results)
- Probe thermal lattice QCD with (heavy) quarks at small temperatures
- Some interesting results even with analytical methods