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Theoretical framework :

o Low-energy effective theory, SU(3) framework (m,, # my)
S. Weinberg (1979)

J. Gasser and H. Leutwyler (1984, 1985)

e Combined expansion in powers of momenta and «
R. Urech (1995)

H. Neufeld and H. Rupertsberger (1995)

e Extension of the framework to the light leptons

M. Knecht, H. Neufeld, H. Rupertsberger, P. Talavera (2000)



Discuss mainly K= — T n {*y,

e One advantage: two equal mass pions
— Invariants have the same expression as in the isospin symmetric case, but

with M+ instead of M.

e Big disadvantage: maximal number of charged particles
— complicates issue of radiative corrections



Tree level
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Lowest order, i.e. O(p?e”) and O(p’e?),
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One-loop order, i.e. O(p*e’), O(p*e?)...

e UV divergences are absorbed by the appropriate counterterms

e IR divergences, generated by photon loops, are regulated by a finite photon
mass 1.

— see later

e Expressions for the form factors F' and (G have been worked out, but remain
cumbersome
Cuplov and Nehme, hep-ph/0311274






..and O(p'e?),

e Many diagrams

e Will not be considered






Radiative /K y4 Decay Amplitudes
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Radiative /K y4 Decay Amplitudes
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Expand in powers of the photon energy

A(Kpy) = A1 (Kuay) + Ao(Kpay) + -+ (1)

In order to study the issue of infrared divergences, A_1 is enough (Low
approximation)
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Integrate over the three-momenta of the invisible particles
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The integration over = produces In m.~ terms due to the singular behaviour of the
integrands at the lower end of the integration range
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Conclusions - Outlook

e (.4 IS @ complex process from the point of view of radiative
corrections. The difficulty, however, is technical rather than
conceptual.

e Only partial calculations available in the litterature. A user
adapted presentation (as e. g. in /& y3) is missing

e Is the framework adapted ?
— No a priori knowledge on m — 7 phases



